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ABSTRACT 

We consider the process tomography problem 
of imaging the concentration distribution of a 
given substance in a fluid moving in a pipeline 
based on electromagnetic measurements on the 
surface of the pipe. We view the problem as a 
state estimation problem. The concentration 
distribution is treated as a stochastic process 
satisfying a stochastic differential equation 
referred to as the state evolution equation. The 
measurements are described in terms of an 
observation equation containing the measurement 
noise. Our main interest is in the mathematical 
formulation of the state evolution equation. The 
time evolution is modelled by a stochastic 
convection-diffusion equation. We derive a 
discrete evolution equation for the concentration 
distribution by using the stochastic integration 
theory and the semigroup technique. 

 
NOMENCLATURE 
argλ  the argument of a complex number λ  

*A  the adjoint of an operator A  
( )B E,H  the space of bounded linear operator 

from E into H  
( )E�  the Borel σ -algebra of a topological 

space E      
2C  twice continuously differentiable 

D  the closure of a set D  
D∂  the boundary of a set D  
( )A�  the domain of an operator A  

( )2H D  the space of functions from D  into �  
with square integrable weak 
derivatives up to order 2 

( )2L D  the space of square integrable 
functions from D  into �  

( )1L 0,T;E  the space of Bochner integrable 

functions from [ ]0,T  into E  

( )X�  the distribution of a random variable 
X  

( )m,Q�  the Gaussian measure with mean m  
and covariance Q  

( )Tr A  the trace of an operator A  

( )UC D  the space of uniformly continuous 

functions from D  into n
�  

( )1UC D  the space of uniformly 
countinuously differentiable 
functions from D  into n

�  
ν  the outer unit normal vector 

 
INTRODUCTION 

We consider the process tomography problem 
of imaging the concentration distribution of a 
given substance in a fluid moving in a pipeline 
based on electromagnetic measurements on the 
surface of the pipe. In electrical impedance 
tomography (EIT), electric currents are applied to 
electrodes on the surface of an object and the 
resulting voltages are measured using the same 
electrodes (Figure 1). The conductivity 
distribution inside the object is reconstructed 
based on the voltage measurements. The relation 
between the conductivity and the concentration 

I
U

c(x,t)

I

v

Figure 1: EIT in process tomography 
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depends on the process and it is usually non-
linear. At least for multiphase mixtures and strong 
electrolytes, such relations are studied and 
discussed in the literature. 

In traditional EIT, it is assumed that the object 
remains stationary during the measurement 
process. A complete set of measurements, also 
called a frame, consists of all possible linearly 
independent injected current patterns and the 
corresponding set of voltage measurements. In 
process tomography, in general we cannot assume 
that the target remains unaltered during a full set 
of measurements. Thus conventional 
reconstruction methods cannot be used. The time 
evolution needs to be modelled properly. We 
view the problem as a state estimation problem. 
The concentration distribution is treated as a 
stochastic process, or a state of the system, that 
satisfies a stochastic differential equation referred 
to as the state evolution equation. The 
measurements are described in terms of an 
observation equation containing the measurement 
noise.  

Often in a state estimation approach the time 
variable is assumed to be discrete and the space 
variable to be finite dimensional. It is convenient 
from the practical point of view. Observations are 
usually done at discrete times and the compution 
requires space discretization. Since our interest is 
in the mathematical formulation of the problem, 
we assume that the space variable is infinite 
dimensional. The solution of the state estimation 
problem is a function valued random variable 
instead of an n

� -valued Gaussian distribution. 
Our goal is to have a real-time monitoring for 

a flow in a pipeline. For that reason the 
computational time has to be minimized. 
Therefore, we use a simple model, the 
convection-diffusion equation, for the flow. It is 
easy to implement and fast to compute. Since we 
cannot be sure that other features such as 
turbulence of the flow do not appear, we use 
stochastic modelling. Therefore the randomness is 
due to the lack of information, not to the intrinsic 
randomness of the concentration.  

The measurements are done in a part of the 
boundary of the pipe. We get enough information 
for an accurate computation only from a segment 
of the pipe. It would be natural to choose the 
domain of the model to be the segment of the 
pipe. If the domain is restricted to be a segment of 
the pipe, we have to use some boundary 
conditions in the input and the output end of the 
segment. The choice of boundary conditions has 

an effect on the solution. The most commonly 
used boundary conditions do not represent the 
actual circumstances in the pipe. Therefore, we do 
not do the domain restriction. We assume that the 
pipe is infinitely long. With the assumption we 
derive the state evolution model. The 
concentration distribution, which we are actually 
interested in, is the restriction of the solution to 
the evolution model to a segment of the pipe.  

This problem has been considered in the 
articles [1,2,3] and in the proceeding papers 
[4,5,6,7,8]. Those articles and proceeding papers 
concentrate on the numerical implementation of 
the problem. Our main interest is in the 
mathematical formulation of the state evolution 
equation and the estimation problem in general. 
We refer to those articles and references in them 
concerning the observation equation. The rigorous 
knowledge of the stochastic nature of the state 
evolution equation is essential for solving the 
electric process tomography problem. 

It is understood that the estimation of 
distributied parameters in inverse problems may 
depend heavely on the discretization scheme. To 
develop discretization invariant estimation 
methods, [9], it is important to study continuous 
stochastic models. This is one of the main 
motivations of this work. Further results will be 
published in [10]. 
 
MATHEMATICAL PRELIMINARIES 
 
Analytic semigroups 

Let E  be a Banach space. A family {U(t)} , 
t 0≥ , of bounded linear operators from E  into 
E  is called a semigroup if U(t)U(s) U(t s)= +  
for all t,s 0≥  and U(0) I= . A semigroup U(t)  
is analytic, if the function t U(t)�  can be 
extended to be an analytic function from a sector 

 
 { }: 0, argλ∈ λ ≠ λ ≤ β�  (1) 

 
with some ( )0,β∈ π  to the space of all bounded 
linear operators from E  into E .  

The linear operator A  defined by 
 

 ( )
t 0

U(t)x xA : x E : lim
t+→

−� �= ∈ ∃� �
� �

�  (2) 

 
and for all ( )x A∈�  
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t 0

U(t)x xAx : lim
t+→

−=  (3) 

 
is the infinitesimal generator of the semigroup 
U(t) . 

Analytic semigroups can be used to solve 
initial value problems. 

 
Theorem 1. If U(t)  is an analytic semigroup 

generated by an operator A  and ( )0u A∈� , then 
the solution to the initial value problem 

 

 
0

u (t) Au(t),
u(0) u
′ =�

� =�
 (4) 

 
is 

 
 0u(t) U(t)u=  (5) 

 
for all t 0≥ . 

 
Proof.  See [11] Section 5.1.2.�  

 
Theorem 2. Let U(t)  be an analytic 

semigroup generated by an operator A  with 
dense domain ( )A� . Let 0u E∈  and 

( )1f L 0,T;E∈ . Then the nonhomogeneous initial 
value problem 

 

 
0

u (t) Au(t) f (t),
u(0) u
′ = +�

� =�
 (6) 

 
has a unique weak solution given by the formula  

 

 
t

0
0

u(t) U(t)u U(t s)f (s) ds= + −�  (7) 

 
for all 0 t T≤ ≤ .  
 
Proof. See [11] Section 5.2.�  
 
Stochastic analysis in infinite dimensions 

Let ( ), ,Ω � �  be a probability space and 

( )E,�  a measurable space. A function 

X : EΩ→  such that the set ( ){ }: X Aω∈Ω ω ∈  
belongs to �  for each A∈�  is called a random 

variable from ( ), ,Ω � �  into ( )E,� . A random 
variable is called simple if it takes only a finite 
number of values. 

Let E  be a separable Banach space. An E -
valued random variable X  is said to be Bochner 
integrable if 

 
 ( ) ( )X d .

Ω
ω ω < ∞� �  (8) 

 
If X  is Bochner integrable, the integral X d

Ω� �  

can be defined and is denoted by ( )X� .  
 

Proposition 3. Let E  be a separable Banach 
space, X  a Bochner integrable E -valued random 
variable defined on ( ), ,Ω � �  and �  a σ -
algebra contained in � . There exists a unique, up 
to a set of � -probability zero, Bochner integrable 
E -valued random variable Z , measurable with 
respect to � , such that 

 
 

A A
X d Z d=� �� �  (9) 

 
for all A∈� . 

 
Proof. See [10] Chapter 4.�  

 
The random variable Z  is denoted by 
( )X ��  and called the conditional expectation of 

X  given � . We use the notation 

( ) ( )( )X Y : X Y= σ� �  where ( )Yσ  is the σ -
algebra generated by the random variable Y . 

Let I  be an interval of � . A family 
{ }X X(t)= , t I∈ , of E -valued random variables 

defined on Ω  is called a stochastic process. We 
set ( ) ( )( )X t, : X tω = ω  for all t I∈  and ω∈Ω . 

Functions ( )X ,⋅ ω  are called the trajectories of 
X . 

Let T 0>  be fixed. A family of σ -algebras  
{ }t� , [ ]t 0,T∈ , is called a filtration, if 

s t⊆ ⊆� � �  for all [ ]s, t 0,T∈ , s t≤ . We 
denote by 

t+
�  the intersection of all s�  where 

t s T< ≤ , i.e., 
 
 st

t s T

.+

< ≤

=� ��  (10) 
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Definition 4. The filtration { }t� , [ ]t 0,T∈ , is 
said to be normal if 
(i) 0�  contains all A∈�  such that ( )A 0=� , 

(ii) t t+
=� �  for all [ ]t 0,T∈ .  

 
We denote by T�  the σ -algebra generated by 

sets of the form 
 

 
](

{ }
s

0

s, t F, 0 s t T,  F ,

0 F, F .

� × ≤ < ≤ ∈�
�

× ∈��

�

�

 (11) 

 
A measurable function from [ ]( )T0,T ,×Ω �  into 

( )( )E, E�  is called a predictable process. 

Let E  and H  be Hilbert spaces and Q  a 
bounded linear symmetric non-negative trace 
class operator.  
 

Definition 5. A E -valued stochastic process 
( )W t , [ ]t 0,T∈ , is called a Q -Wiener process if 

(i) ( )W 0 0= , 
(ii) W  has continuous trajectories, 
(iii) W  has independent increments, 
(iv) ( ) ( )( ) ( )( )W t W s 0, t s Q− = −� �  for  

0 s t T≤ ≤ ≤ . 
 

W  is a Q -Wiener process with respect to a 
filtration { }t� , [ ]t 0,T∈ , if 

(i) ( )W t  is t� -measurable, 

(ii) ( ) ( )W t h W t+ −  is independent of t�  for all 

h 0≥  and [ ]t, t h 0,T+ ∈ . 
 
A ( )B E,H -valued process ( )tΦ , [ ]t 0,T∈ , 

taking only a finite number of values is said to be 
elementary if there exist a sequence 

0 1 k0 t t ... t T= < < < =  and a sequence 

0 1 k 1, ,..., −Φ Φ Φ  of ( )B E,H -valued simple 
random variables such that mΦ  is 

mt
� -

measurable and 
 

 ( ) ](m m m 1t for  t t , t +Φ = Φ ∈  (12) 
 

for all m 0,1,...,k 1= − . We define the stochastic 
integral for elementary processes Φ  by the 
formula 
 

 
( ) ( )

( ) ( )( )

t

0
k 1

m m 1 m
m 0

s  dW s

: W t t W t t
−

+
=

Φ

= Φ ∧ − ∧

�

�
 (13) 

 
where ( )s t min s, t∧ = . The definition of the 
stochastic integral can be extended to all 
( )B E,H -valued predictable processes Φ  such 

that 
 

 ( ) ( )
T

*

0

Tr s Q s ds .� �Φ Φ < ∞� ���  (14) 

  
Let { }t� , [ ]t 0,T∈ , be  a normal filtration 

and W  a Q -Wiener process with respect to 
{ }t� .  

 
Theorem 6. Let ( )U t  be an analytic 

semigroup generated by an operator A  with 
dense domain ( )A H⊂� , f  a H -valued 
predictable process with Bochner integrable 
trajectories on [ ]0,T , B  a bounded linear 
operator from E  into H  and 0X  a 0� -
measurable random variable. If 

 

 ( ) ( )
T

* *

0

Tr U s BQB U s ds ,� � < ∞� ��  (15) 

 
then the stochastic differential equation 
 

 
( ) ( ) ( ) ( )
( ) 0

dX t AX t f t BdW t ,

X 0 X

� = + +� �� � �
�

=��

 (16) 

  
has exactly one weak solution given by the 
formula 

 

 
( ) ( ) ( ) ( )

( ) ( )

t

0
0

t

0

X t U t X U t s f s ds

           U t s B dW s

= + − +

+ −

�

�

 (17) 
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for all 0 t T≤ ≤ . 
 

Proof. See [10] Chapter 4.�  
 
STATE ESTIMATION 

Let nD ⊂ �  be a domain that corresponds to 
the object of interest. We denote by ( )X X t,x= , 
x D∈ , a distributed parameter describing the 
state of the object – the unknown distribution of a 
physical target – at time t 0≥ . We assume that 
we have a model for the time evolution of the 
parameter X . We assume that instead of a 
deterministic function X  is a stochastic process 
satisfying a stochastic differential equation. This 
allows us to incorporate phenomena such as 
modelling uncertainties into the model. 

Let ( )Y Y t=  denote a quantity that is 
directly observable at times t I∈ , 

{ }k k k 1I t : t t , k+= < ∈� . We assume that the 
dependence of Y  upon the state X  is known up 
to observation noise and modelling errors.  

The state estimation system consists of a pair 
of equations 

 
 ( ) ( ) ( )dX t F t,X,R dW t ,= +  (18) 

 ( ) ( )Y t G t,X,S , t I.= ∈  (19) 
 

Equation (18) is called the state evolution 
equation and is to be interpreted as a stochastic 
differential equation in which the function F  is 
the evolution model function and ( )R R t=  and 

( )W W t=  are stochastic processes. The process 
W  is called the state noise. Equation (19) is 
called the observation equation. The function G  
is the observation model function and ( )S S t=  is 
a stochastic process, the observation noise.  

The state estimation problem can be 
formulated as follows: Estimate the state X  
satisfying an evolution equation of the type (18) 
based on the observed values of ( )Y t , when t  is 
in a given subset of I . The most commonly used 
estimators are the predictor 
 
 ( ) ( )( )k iX t Y t ,i 1,...,k 1 ,= −�  (20) 

 
the filter 

 

 ( ) ( )( )k iX t Y t ,i 1,...,k=�  (21) 

 
and the smoother 
 
 ( ) ( )( )k iX t Y t ,i I .∈�  (22) 

 
Predictor (20) is based on the history at the 
previous time step, Filter (21) on the current 
history and Smoother (22) on the whole 
measurement set.  

We consider the special case in which 
observations are obtained by EIT measurements 
and in which the physical target can be described 
by the convection-diffusion equation. 
 
MATHEMATICAL FORMULATION OF THE 
STATE EVOLUTION EQUATION 

We examine a concentration distribution in a 
fluid moving in a pipe with a velocity distribution 
defined by the laminar flow equation by doing 
electric measurements at the boundary of the pipe. 
Let ( )xκ = κ  be the diffusion coefficient and 

( )x=v v  be the velocity of the flow. The 
diffusion coefficient and the velocity distribution 
are assumed to be known and stationary. In 
addition, the incompresessibility condition 

0∇⋅ =v  is valid in D  and the flow is tangential 
at the pipe walls, i.e., 0⋅ =ν v  at D∂ . We assume 
that the concentration distribution ( )C t  is a 
stochastic process satisfying the stochastic 
differential equation  
 
 ( ) ( ) ( ) ( )dC t LC t f t BdW t= + +� �� �  (23) 
  
for every t 0>  with the initial value 
 
 ( ) 0C 0 C .=  (24) 
 
The operator L  is the deterministic convection-
diffusion operator 
 

 
( ) ( )

( )

2L : L L D

           c c c

→

∇⋅ κ∇ − ⋅∇v

�

�

 (25) 

 
with the domain 
 

 ( ) ( )2

D

cL c H D : 0
∂

� �∂= ∈ =� �∂ν� �
�  (26) 
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where nD⊂ �  is an infinitely long pipe. The 
boundary condition at the boundary of the pipe is 
included in the domain of the operator L . We 
assume that there is no diffusion through the pipe 
walls. We model with ( )f t  a possible control of 
the system. Since the control term is known, if the 
state of the system is known, we may assume that 
( )f t  is an ( )2L D -valued predictable process. 

The term ( )BdW t  is a source term representing 
possible modelling errors, where B  is a bounded 
linear operator from ( )2L D  to itself and ( )W t  is 

an ( )2L D -valued Wiener process.  
We use the semigroup technique to solve the 

stochastic convection-diffusion equation (23) with 
the initial value (24). 

 
Theorem 7. Let the domain nD⊂ �  be open 

and its boundary 2C  smooth. Then the operator 
L  generates an analytic semigroup ( )U t , if the 
diffusion coefficient κ  is positive and bounded 
from below, ( )x 0κ ≥ δ >  for all x D∈ , and the 
diffusion coefficient and the velocity of the flow 
satisfy the conditions  

 

 
( )
( )

1

n

: D , UC D ,

: D , UC D .

�κ → κ∈�
�

→ ∈��v v

�

�

 (27) 

 
 Proof. See [10] Chapter 5.�  
 

Consequently, if ( )2
0c L D∈  and 

( )( )1 2f L 0,T;L D∈ , by Theorem 2 the 
deterministic version  
 

 
( ) ( ) ( )
( ) 0

c t Lc t f t ,

c 0 c

′ = +��
�

=��
 (28) 

 
of the stochastic convection-diffusion equation 
(23) with the initial value (24) has a unique weak 
solution 
 

 ( ) ( ) ( ) ( )
t

0
0

c t U t c U t s f s ds= + −�  (29) 

 
for all [ ]t 0,T∈ .  

By Theorem 6 the weak solution to the 
stochastic convection-diffusion equation (23) with 
the initial value (24) has the similar form as the 
deterministic one. 

 
Theorem 8. Let { }t� , [ ]t 0,T∈ , be a normal 

filtration and W  a Wiener process with respect to 
the filtration. If f  has Bochner integrable 
trajectories on [ ]0,T  and 0C  is 0� -measurable, 
then the stochastic convection-diffusion equation 
(23) with the initial value (24) has exactly one 
weak solution given by the formula 

 

 
( ) ( ) ( ) ( )

( ) ( )

t

0
0

t

0

C t U t C U t s f s ds

            + U t s B dW s

= + − +

−

�

�

 (30) 

 
for all [ ]t 0,T∈ . 
 
Proof. See [10] Chapter 5.�   

 
Discrete evolution model without control 

We assume that there is no control in our 
system, i.e., f 0≡ . The measurements are done in 
a discrete set of times kt . We use the notation 

( )k kC C t=  and k k 1 kt t+∆ = − . Then a discrete 
evolution model for the concentration distribution 
is 

 
 ( )k 1 k k kC U C W+ = ∆ +  (31) 

 
where 
 

 ( ) ( )
k 1

k

t

k k 1
t

W U t s B dW s .
+

+= −�  (32) 

 
The term kW  can be seen as a state noise. 

The discrete evolution model (31) combined 
with an observation model enables us to calculate 
some estimator for the concentration distribution. 
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